Share Email Print

Proceedings Paper

Wet trimming process for critical dimension reduction
Author(s): Sam X. Sun; Brian A. Smith; Anwei Qin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Plasma trimming is a method widely used to achieve small feature sizes beyond the capability of photolithography. Plasma processes reduce the dimensions of photoresist, anti-reflective coating, hardmask, or device substrate patterns with varying degrees of anisotropy. The vertical trim rate is higher than or equal to the lateral trim rate. As a result, much of the line-edge roughness from the resist pattern remains. High aspect-ratio resist patterns are subject to necking and collapse during this process. However, by using a developer-soluble hardmask in place of traditional anti-reflective layers, it is possible to achieve controllable, anisotropic trim rates, as well as reduced roughness. Moreover, the process benefits from a very thin resist, or imaging layer, instead of relying on a thicker mask with a high aspect-ratio. The hardmask is patterned during a standard resist develop step, and the resist may be stripped prior to substrate etching due to the high etch resistance of the hardmask. Many other advantages have been discovered from this wet trimming process, including high resolution, extended depth of focus, controllable trim rate, and lower cost than traditional methods.

Paper Details

Date Published: 27 March 2008
PDF: 11 pages
Proc. SPIE 6923, Advances in Resist Materials and Processing Technology XXV, 692336 (27 March 2008); doi: 10.1117/12.772925
Show Author Affiliations
Sam X. Sun, Brewer Science, Inc. (United States)
Brian A. Smith, Brewer Science, Inc. (United States)
Anwei Qin, Brewer Science, Inc. (United States)

Published in SPIE Proceedings Vol. 6923:
Advances in Resist Materials and Processing Technology XXV
Clifford L. Henderson, Editor(s)

© SPIE. Terms of Use
Back to Top