Share Email Print

Proceedings Paper

Combined thermal and elastic modeling of the normal and tumorous breast
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The abnormal thermogram has been shown to be a reliable indicator of a high risk of breast cancer, but an open question is how to quantify the complex relationships between the breast thermal behaviors and the underlying physiological/pathological conditions. Previous thermal modeling techniques generally did not utilize the breast geometry determined by the gravity-induced elastic deformations arising from various body postures. In this paper, a 3-D finite-element method is developed for combined modeling of the thermal and elastic properties of the breast, including the mechanical nonlinearity associated with large deformations. The effects of the thermal and elastic properties of the breast tissues are investigated quantitatively. For the normal breast in a standing/sitting up posture, the gravity-induced deformation alone is found to be able to cause an asymmetric temperature distribution even though all the thermal/elastic properties are symmetrical, and this temperature asymmetry increases for softer and more compressible breast tissues. For a tumorous breast, we found that the surface-temperature alterations generally can be recognizable for superficial tumors at depths less than 20 mm. Tumor size plays a less important role than the tumor depth in determining the tumor-induced temperature difference. This result may imply that a higher thermal sensitivity is critical for a breast thermogram system when deeper tumors are present, even if the tumor is relatively large. We expect this new method to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis and treatment of breast tumors.

Paper Details

Date Published: 12 March 2008
PDF: 12 pages
Proc. SPIE 6916, Medical Imaging 2008: Physiology, Function, and Structure from Medical Images, 69161E (12 March 2008); doi: 10.1117/12.772451
Show Author Affiliations
Li Jiang, George Washington Univ. (United States)
Wang Zhan, Univ. of California, San Francisco (United States)
Murray Loew, George Washington Univ. (United States)

Published in SPIE Proceedings Vol. 6916:
Medical Imaging 2008: Physiology, Function, and Structure from Medical Images
Xiaoping P. Hu; Anne V. Clough, Editor(s)

© SPIE. Terms of Use
Back to Top