Share Email Print

Proceedings Paper

Fast response organic light-emitting diode for visible optical communication
Author(s): Takeshi Fukuda; Yoshio Taniguchi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We examined fast response organic light-emitting diodes (OLEDs) for new applications of visible optical communications. For the practical use in this field, the fast transmission speed of OLEDs is required to be used in many applications, but the low carrier mobility of organic materials and the long fluorescence lifetime (FL) organic emitting materials limit the transmission speed of OLEDs. Therefore, we investigated the influence of the FL on transient properties of photoluminescence (PL), which were evaluated by the frequency dependence of PL intensity excited by a modulated violet laser diode. The FLs of several organic emitting materials were also measured, and we found the clear relationship between the FL and the transient properties of PL intensity. The fastest cutoff frequency of PL intensity was achieved 160 MHz utilizing short FL material, 1,4-bis[2-[4-[N,N-di(ptolyl)amino]phenl]vinyl]benzene. We also investigated another way to increase the transmission speed utilizing a semiconductor-organic multilayer structure, of which ZnS was used as an electron transport layer. The maximum cutoff frequency of this device was achieved 20.3 MHz, while that of the organic multilayer structure was 8.7 MHz at a sine wave voltage of 7 V and a bias voltage of 5 V. This result indicates that the high carrier mobility of the ZnS layer causes the increase in the transmission speed of OLEDs. We demonstrated one institutive demonstrator module of visible optical communications, which consisted of the transceiver module with an OLED and the pen-type receiver module with a photo-diode at a point. The movie files was transmitted at a speed of 230 kbps, when the point of a pen-type receiver module approaches the emitting area of an OLED. Furthermore, the pseudo-random signal with 1Mbps was also transmitted with this visible optical communication system. Such a system enables to connect between transceiver and receiver module without precious alignment because of the large emitting area of OLEDs. So, we think that many people, from children to aged people, are easy to get information from OLEDs without being aware of using optical communications. Furthermore, the communication field is limited near the emitting area of an OLED, resulting in a safe data transmission.

Paper Details

Date Published: 8 February 2008
PDF: 13 pages
Proc. SPIE 6899, Photonics Packaging, Integration, and Interconnects VIII, 68990K (8 February 2008); doi: 10.1117/12.771703
Show Author Affiliations
Takeshi Fukuda, Fujikura Ltd. (Japan)
Yoshio Taniguchi, Shinshu Univ. (Japan)

Published in SPIE Proceedings Vol. 6899:
Photonics Packaging, Integration, and Interconnects VIII
Alexei L. Glebov; Ray T. Chen, Editor(s)

© SPIE. Terms of Use
Back to Top