Share Email Print

Proceedings Paper

A kidney deformation model for use in non-rigid registration during image-guided surgery
Author(s): Rowena E. Ong; S. Duke Herrell; Michael I. Miga; Robert L. Galloway
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In order to facilitate the removal of tumors during partial nephrectomies, an image-guided surgery system may be useful. This system would require a registration of the physical kidney to a pre-operative image volume; however, it is unclear whether a rigid registration would be sufficient. One possible source of non-rigid deformation is the clamping of the renal artery during surgery and the subsequent loss of pressure as the kidney is punctured and blood loss occurs. To explore this issue, a model of kidney deformation due to loss of perfusion and pressure was developed based on Biot's consolidation model. The model was tested on two resected porcine kidneys in which the renal artery and vein were clamped. CT image volumes of the kidney were obtained before and after the deformation caused unclamping, and fiducial markers embedded on the kidney surface allowed the deformation to be tracked. The accuracy of the kidney model was accessed by calculating the model error at the fiducial locations and using image similarity measures. Preliminary results indicate that the model may be useful in a non-rigid registration scheme; however, further refinements to the model may be necessary to better simulate the deformation due to loss of perfusion and pressure.

Paper Details

Date Published: 17 March 2008
PDF: 9 pages
Proc. SPIE 6918, Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling, 69180W (17 March 2008); doi: 10.1117/12.771669
Show Author Affiliations
Rowena E. Ong, Vanderbilt Univ. (United States)
S. Duke Herrell, Vanderbilt Univ. (United States)
Michael I. Miga, Vanderbilt Univ. (United States)
Robert L. Galloway, Vanderbilt Univ. (United States)

Published in SPIE Proceedings Vol. 6918:
Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling
Michael I. Miga; Kevin Robert Cleary, Editor(s)

© SPIE. Terms of Use
Back to Top