Share Email Print

Proceedings Paper

Computer-aided interpretation of ICU portable chest images: automated detection of endotracheal tubes
Author(s): Zhimin Huo; Simon Li; Minjie Chen; John Wandtke
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In intensive care units (ICU), endotracheal (ET) tubes are inserted to assist patients who may have difficulty breathing. A malpositioned ET tube could lead to a collapsed lung, which is life threatening. The purpose of this study is to develop a new method that automatically detects the positioning of ET tubes on portable chest X-ray images. The method determines a region of interest (ROI) in the image and processes the raw image to provide edge enhancement for further analysis. The search of ET tubes is performed within the ROI. The ROI is determined based upon the analysis of the positions of the detected lung area and the spine in the image. Two feature images are generated: a Haar-like image and an edge image. The Haar-like image is generated by applying a Haar-like template to the raw ROI or the enhanced version of the raw ROI. The edge image is generated by applying a direction-specific edge detector. Both templates are designed to represent the characteristics of the ET tubes. Thresholds are applied to the Haar-like image and the edge image to detect initial tube candidates. Region growing, combined with curve fitting of the initial detected candidates, is performed to detect the entire ET tube. The region growing or "tube growing" is guided by the fitted curve of the initial candidates. Merging of the detected tubes after tube growing is performed to combine the detected broken tubes. Tubes within a predefined space can be merged if they meet a set of criteria. Features, such as width, length of the detected tubes, tube positions relative to the lung and spine, and the statistics from the analysis of the detected tube lines, are extracted to remove the false-positive detections in the images. The method is trained and evaluated on two different databases. Preliminary results show that computer-aided detection of tubes in portable chest X-ray images is promising. It is expected that automated detection of ET tubes could lead to timely detection of malpositioned tubes, thus improve overall patient care.

Paper Details

Date Published: 17 March 2008
PDF: 8 pages
Proc. SPIE 6915, Medical Imaging 2008: Computer-Aided Diagnosis, 69152J (17 March 2008); doi: 10.1117/12.770546
Show Author Affiliations
Zhimin Huo, Carestream Health, Inc. (United States)
Simon Li, Carestream Health, Inc. (United States)
Minjie Chen, Carestream Health, Inc. (United States)
John Wandtke, Univ. of Rochester (United States)

Published in SPIE Proceedings Vol. 6915:
Medical Imaging 2008: Computer-Aided Diagnosis
Maryellen L. Giger; Nico Karssemeijer, Editor(s)

© SPIE. Terms of Use
Back to Top