Share Email Print

Proceedings Paper

An efficient topology adaptation system for parametric active contour segmentation of 3D images
Author(s): Jochen Abhau; Otmar Scherzer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Active contour models have already been used succesfully for segmentation of organs from medical images in 3D. In implicit models, the contour is given as the isosurface of a scalar function, and therefore topology adaptations are handled naturally during a contour evolution. Nevertheless, explicit or parametric models are often preferred since user interaction and special geometric constraints are usually easier to incorporate. Although many researchers have studied topology adaptation algorithms in explicit mesh evolutions, no stable algorithm is known for interactive applications. In this paper, we present a topology adaptation system, which consists of two novel ingredients: A spatial hashing technique is used to detect self-colliding triangles of the mesh whose expected running time is linear with respect to the number of mesh vertices. For the topology change procedure, we have developed formulas by homology theory. During a contour evolution, we just have to choose between a few possible mesh retriangulations by local triangle-triangle intersection tests. Our algorithm has several advantages compared to existing ones: Since the new algorithm does not require any global mesh reparametrizations, it is very efficient. Since the topology adaptation system does not require constant sampling density of the mesh vertices nor especially smooth meshes, mesh evolution steps can be performed in a stable way with a rather coarse mesh. We apply our algorithm to 3D ultrasonic data, showing that accurate segmentation is obtained in some seconds.

Paper Details

Date Published: 26 March 2008
PDF: 11 pages
Proc. SPIE 6914, Medical Imaging 2008: Image Processing, 69143T (26 March 2008); doi: 10.1117/12.770523
Show Author Affiliations
Jochen Abhau, Institut für Informatik (Austria)
Otmar Scherzer, Institut für Informatik (Austria)
IMCC Linz (Austria)

Published in SPIE Proceedings Vol. 6914:
Medical Imaging 2008: Image Processing
Joseph M. Reinhardt; Josien P. W. Pluim, Editor(s)

© SPIE. Terms of Use
Back to Top