Share Email Print
cover

Proceedings Paper

Pulmonary artery segmentation and quantification in sickle cell associated pulmonary hypertension
Author(s): Marius George Linguraru; Nisha Mukherjee; Robert L. Van Uitert; Ronald M. Summers; Mark T. Gladwin; Roberto F. Machado; Bradford J. Wood
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Pulmonary arterial hypertension is a known complication associated with sickle-cell disease; roughly 75% of sickle cell disease-afflicted patients have pulmonary arterial hypertension at the time of death. This prospective study investigates the potential of image analysis to act as a surrogate for presence and extent of disease, and whether the size change of the pulmonary arteries of sickle cell patients could be linked to sickle-cell associated pulmonary hypertension. Pulmonary CT-Angiography scans from sickle-cell patients were obtained and retrospectively analyzed. Randomly selected pulmonary CT-Angiography studies from patients without sickle-cell anemia were used as negative controls. First, images were smoothed using anisotropic diffusion. Then, a combination of fast marching and geodesic active contours level sets were employed to segment the pulmonary artery. An algorithm based on fast marching methods was used to compute the centerline of the segmented arteries. From the centerline, the diameters at the pulmonary trunk and first branch of the pulmonary arteries were measured automatically. Arterial diameters were normalized to the width of the thoracic cavity, patient weight and body surface. Results show that the pulmonary trunk and first right and left pulmonary arterial branches at the pulmonary trunk junction are significantly larger in diameter with increased blood flow in sickle-cell anemia patients as compared to controls (p values of 0.0278 for trunk and 0.0007 for branches). CT with image processing shows great potential as a surrogate indicator of pulmonary hemodynamics or response to therapy, which could be an important tool for drug discovery and noninvasive clinical surveillance.

Paper Details

Date Published: 12 March 2008
PDF: 8 pages
Proc. SPIE 6916, Medical Imaging 2008: Physiology, Function, and Structure from Medical Images, 691612 (12 March 2008); doi: 10.1117/12.770485
Show Author Affiliations
Marius George Linguraru, National Institutes of Health (United States)
Nisha Mukherjee, National Institutes of Health (United States)
Robert L. Van Uitert, National Institutes of Health (United States)
Ronald M. Summers, National Institutes of Health (United States)
Mark T. Gladwin, National Institutes of Health (United States)
Roberto F. Machado, National Institutes of Health (United States)
Bradford J. Wood, National Institutes of Health (United States)


Published in SPIE Proceedings Vol. 6916:
Medical Imaging 2008: Physiology, Function, and Structure from Medical Images
Xiaoping P. Hu; Anne V. Clough, Editor(s)

© SPIE. Terms of Use
Back to Top