Share Email Print
cover

Proceedings Paper

A dual-reflective electrothermal MEMS micromirror for full circumferential scanning endoscopic imaging
Author(s): Lei Wu; Huikai Xie
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper reports the design, fabrication and measurements of a dual-reflective, single-crystal silicon based micromirror that can perform full circumferential scanning (FCS) for endoscopic optical coherence tomography (EOCT). In the proposed FCS-EOCT probe, two optical fibers are used to deliver light beams to either surface of the micromirror, which can rotate ±45° (or 90°) and thus a 180° optical scanning is obtained from each mirror surface, resulting in full circumferential scans. A novel surface- and bulk-combined micromachining process based on SOI wafers is developed for fabricating the dual reflective micromirror. The single-crystal-silicon device layer of SOI wafers is used for mirror flatness, and Al is coated on both sides for high reflectivity. With one light beam delivered to each mirror surface, full 360° scans have been observed. Other measured data include the resonant frequency: 328Hz, radius of curvatures: - 124 mm (front surface) and 127 mm (back surface), and the reflectances: 81.3% (front surface) and 79.0% (back surface).

Paper Details

Date Published: 6 February 2008
PDF: 8 pages
Proc. SPIE 6885, MEMS/MOEMS Components and Their Applications V. Special Focus Topics: Transducers at the Micro-Nano Interface, 688508 (6 February 2008); doi: 10.1117/12.769621
Show Author Affiliations
Lei Wu, Univ. of Florida (United States)
Huikai Xie, Univ. of Florida (United States)


Published in SPIE Proceedings Vol. 6885:
MEMS/MOEMS Components and Their Applications V. Special Focus Topics: Transducers at the Micro-Nano Interface
Srinivas A. Tadigadapa; Babak A. Parviz; Albert K. Henning, Editor(s)

© SPIE. Terms of Use
Back to Top