Share Email Print
cover

Proceedings Paper

GREAT: the German first light heterodyne instrument for SOFIA
Author(s): Urs U. Graf; Stefan Heyminck; Rolf Güsten; Paul Hartogh; Heinz-Wilhelm Hübers; Jürgen Stutzki; Jérôme Faist; Milan Fischer; Karl Jacobs; Martin Philipp; David Rabanus; Alexej Semenov; Peter van der Wal; Armin Wagner-Gentner; Christoph Walther; Martina Wiedner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

GREAT, the German REceiver for Astronomy at Terahertz frequencies, is a first generation SOFIA dual channel heterodyne PI−instrument for high resolution spectroscopy. The system is developed by a consortium of German research institutes. The receiver will allow simultaneous observations in two out of the following three far−infrared frequency bands: * a low−frequency (1.4−1.9 THz) channel for e.g. the fine-structure lines of ionized nitrogen [NII] at 205μm and ionized carbon [CII] at 158μm; * a mid−frequency (2.4−2.7 THz) channel for e.g. the 112μm transition of HD; and * a high−frequency (4.7 THz channel) for the 63 μm fine−structure line of neutral atomic oxygen. Hot electron bolometers (HEB) mixers provide state of the art sensitivity. A spectral resolving power of up to 108 is achieved with chirp transform spectrometers, and a total bandwidth of 4 GHz at 1 MHz resolution is reached with wide band acousto-optical spectrometers. The modular concept of GREAT allows to observe with any combination of two out of the three channels aboard SOFIA. A more complete frequency coverage of the THz regime by adding additional GREAT channels is possible in the future. The adaptation of new LO−, mixer− or backend−techniques is easily possible. We describe details of the receiver and the results of first performance tests of the system at 1.9 THz. As an outlook to future developments we show first results obtained with phase locking a quantum cascade laser, the most promising option for future high power local oscillators in the Terahertz regime.

Paper Details

Date Published: 26 September 2007
PDF: 8 pages
Proc. SPIE 6678, Infrared Spaceborne Remote Sensing and Instrumentation XV, 66780K (26 September 2007); doi: 10.1117/12.768027
Show Author Affiliations
Urs U. Graf, Univ. zu Köln (Germany)
Stefan Heyminck, Max-Planck-Institut für Radioastronomie (Germany)
Rolf Güsten, Max-Planck-Institut für Radioastronomie (Germany)
Paul Hartogh, Max-Planck-Institut für Sonnensystemforschung (Germany)
Heinz-Wilhelm Hübers, DLR, Institut für Planetenforschung (Germany)
Jürgen Stutzki, Univ. zu Köln (Germany)
Jérôme Faist, ETH, Institut für Quantenelektronik (United States)
Milan Fischer, ETH, Institut für Quantenelektronik (United States)
Karl Jacobs, Univ. zu Köln (Germany)
Martin Philipp, Univ. zu Köln (Germany)
David Rabanus, Univ. zu Köln (Germany)
European Southern Observatory (Chile)
Alexej Semenov, DLR, Institut für Planetenforschung (Germany)
Peter van der Wal, Max-Planck-Institut für Radioastronomie (Germany)
Armin Wagner-Gentner, Univ. zu Köln (Germany)
Christoph Walther, ETH, Institut für Quantenelektronik (Switzerland)
Martina Wiedner, Univ. zu Köln (Germany)


Published in SPIE Proceedings Vol. 6678:
Infrared Spaceborne Remote Sensing and Instrumentation XV
Marija Strojnik-Scholl, Editor(s)

© SPIE. Terms of Use
Back to Top