Share Email Print

Proceedings Paper

Biometric hashing for handwriting: entropy-based feature selection and semantic fusion
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Some biometric algorithms lack of the problem of using a great number of features, which were extracted from the raw data. This often results in feature vectors of high dimensionality and thus high computational complexity. However, in many cases subsets of features do not contribute or with only little impact to the correct classification of biometric algorithms. The process of choosing more discriminative features from a given set is commonly referred to as feature selection. In this paper we present a study on feature selection for an existing biometric hash generation algorithm for the handwriting modality, which is based on the strategy of entropy analysis of single components of biometric hash vectors, in order to identify and suppress elements carrying little information. To evaluate the impact of our feature selection scheme to the authentication performance of our biometric algorithm, we present an experimental study based on data of 86 users. Besides discussing common biometric error rates such as Equal Error Rates, we suggest a novel measurement to determine the reproduction rate probability for biometric hashes. Our experiments show that, while the feature set size may be significantly reduced by 45% using our scheme, there are marginal changes both in the results of a verification process as well as in the reproducibility of biometric hashes. Since multi-biometrics is a recent topic, we additionally carry out a first study on a pair wise multi-semantic fusion based on reduced hashes and analyze it by the introduced reproducibility measure.

Paper Details

Date Published: 18 March 2008
PDF: 12 pages
Proc. SPIE 6819, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, 68190N (18 March 2008); doi: 10.1117/12.766378
Show Author Affiliations
Tobias Scheidat, Univ. of Magdeburg (Germany)
Claus Vielhauer, Univ. of Magdeburg (Germany)

Published in SPIE Proceedings Vol. 6819:
Security, Forensics, Steganography, and Watermarking of Multimedia Contents X
Edward J. Delp; Ping Wah Wong; Jana Dittmann; Nasir D. Memon, Editor(s)

© SPIE. Terms of Use
Back to Top