Share Email Print

Proceedings Paper

Mitigating polarization effects in on-die diffractive optics for a CMOS image sensor
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

On-die optics have been proposed for stand-alone image sensors. Previous works by the authors have proposed fabricating diffractive optical elements using the upper metal layers in a commercial CMOS process. This avoids the cost associated with process steps associated with microlens fabrication, but results in a point spread function that varies with the wavelength, angle, and polarization of incident light. Wavelength and angle sensitivities have been addressed by previous works. This paper models the effects of polarization on the point spread function of the imaging system, and proposes optical and algorithmic methods for compensating for these effects. The imaging behaviors of the resulting systems are evaluated. Simulations indicate that the uncorrected system can locate point sources to within +/-0.1 radian, and polarized point sources to within +/-0.05 radian along the axis of polarization. A system is described that uses a polarization-insensitive optical element and a deconvolution filter to achieve a corrected resolution pf +/-0.05 radian, with the ability to perform imaging of non-point sources with white light illumination.

Paper Details

Date Published: 29 February 2008
PDF: 12 pages
Proc. SPIE 6816, Sensors, Cameras, and Systems for Industrial/Scientific Applications IX, 68160Q (29 February 2008); doi: 10.1117/12.765927
Show Author Affiliations
Christopher Thomas, York Univ. (Canada)
Richard Hornsey, York Univ. (Canada)

Published in SPIE Proceedings Vol. 6816:
Sensors, Cameras, and Systems for Industrial/Scientific Applications IX
Morley M. Blouke; Erik Bodegom, Editor(s)

© SPIE. Terms of Use
Back to Top