Share Email Print

Proceedings Paper

Toward silicon-based longwave integrated optoelectronics (LIO)
Author(s): Richard Soref
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The vision of longwave silicon photonics articulated in the Journal of Optics A, vol. 8, pp 840-848, 2006 has now come into sharper focus. There is evidence that newly designed silicon-based optoelectronic circuits will operate at any wavelength within the wide 1.6 to 200 μm range. Approaches to that LWIR operation are reviewed here. A long-range goal is to manufacture LWIR OEIC chips in a silicon foundry by integrating photonics on-chip with CMOS, bipolar, or BiCMOS micro-electronics. A principal LWIR application now emerging is the sensing of chemical and biological agents with an OE laboratory-on-a-chip. Regarding on-chip IR sources, the hybrid evanescent-wave integration of III-V interband-cascade lasers and quantum-cascade lasers on silicon (or Ge/Si) waveguides is a promising technique, although an alternative all-group-IV solution is presently taking shape in the form of silicon-based Ge/SiGeSn band-to-band and inter-subband lasers. There is plenty of room for creativity in developing a complete suite of LWIR components. Materials modification, device innovation, and scaling of waveguide dimensions are needed to implement microphotonic, plasmonic and photonic-crystal LWIR devices, both active and passive. Such innovation will likely lead to significant LIO applications.

Paper Details

Date Published: 13 February 2008
PDF: 13 pages
Proc. SPIE 6898, Silicon Photonics III, 689809 (13 February 2008); doi: 10.1117/12.765459
Show Author Affiliations
Richard Soref, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 6898:
Silicon Photonics III
Joel A. Kubby; Graham T. Reed, Editor(s)

© SPIE. Terms of Use
Back to Top