Share Email Print
cover

Proceedings Paper

The application of FRET biosensors to visualize Src activation
Author(s): Yingxiao Wang; Shaoying Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Src kinase, the first tyrosine kinase discovered, has been shown to play critical roles in a variety of cellular processes, including cell motility/migration, mechanotranduction, and cancer development. Based on fluorescent resonance energy transfer (FRET), we have developed and characterized a genetically encoded single-molecule Src biosensor, which enables the imaging and quantification of temporal-spatial activation of Src in live cells. In this paper, we summarize the application of this biosensor to study a variety of cellular functions. First, we introduced a local mechanical stimulation by applying laser-tweezer-induced traction on fibronectin-coated beads adhered to the cells. Using a membrane-anchored Src biosensor, we observed a wave propagation of Src activation in a direction opposite to the applied force. This Src reporter was also applied to visualize the interplays between cell-cell and cell-ECM adhesions. The results indicate that integrin-ligation can induce Src activation around cell-cell junctions and cause the disruption of adherens junctions. Lastly, the flow-induced dynamic Src activation at subcellular levels was visualized by the FRET biosensor simultaneously with actin-fused mCherry, a red fluorescence protein. Our results indicate that shear stress induced a moderate up-regulation of Src activation in the whole cell, but a significant translocation of active Src from perinuclear regions toward cell periphery. In summary, our novel Src biosensor has made it possible to monitor key signaling transduction cascades involving Src in live cells with temporal-spatial characterization in mechanobiology.

Paper Details

Date Published: 29 February 2008
PDF: 9 pages
Proc. SPIE 6868, Small Animal Whole-Body Optical Imaging Based on Genetically Engineered Probes, 68680A (29 February 2008); doi: 10.1117/12.764713
Show Author Affiliations
Yingxiao Wang, Beckman Institute, Univ. of Illinois, Urbana-Champaign (United States)
Shaoying Lu, Beckman Institute, Univ. of Illinois, Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 6868:
Small Animal Whole-Body Optical Imaging Based on Genetically Engineered Probes
Alexander P. Savitsky; Robert E. Campbell; Robert M. Hoffman, Editor(s)

© SPIE. Terms of Use
Back to Top