Share Email Print

Proceedings Paper

Photoacoustic wave propagation simulations using the FDTD method with Berenger's perfectly matched layers
Author(s): Yae-Lin Sheu; Chen-Wei Wei; Chao-Kang Liao; Pai-Chi Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Several photoacoustic (PA) techniques, such as photoacoustic imaging, spectroscopy, and parameter sensing, measure quantities that are closely related to optical absorption, position detection, and laser irradiation parameters. The photoacoustic waves in biomedical applications are usually generated by elastic thermal expansion, which has advantages of nondestructiveness and relatively high conversion efficiency from optical to acoustic energy. Most investigations describe this process using a heuristic approximation, which is invalid when the underlying assumptions are not met. This study developed a numerical solution of the general photoacoustic generation equations involving the heat conduction theorem and the state, continuity, and Navier-Stokes equations in 2.5D axis-symmetric cylindrical coordinates using a finite-difference time-domain (FDTD) scheme. The numerical techniques included staggered grids and Berenger's perfectly matched layers (PMLs), and linear-perturbation analytical solutions were used to validate the simulation results. The numerical results at different detection angles and durations of laser pulses agreed with the theoretical estimates to within an error of 3% in the absolute differences. In addition to accuracy, the flexibility of the FDTD method was demonstrated by simulating a photoacoustic wave in a homogeneous sphere. The performance of Berenger's PMLs was also assessed by comparisons with the traditional first-order Mur's boundary condition. At the edges of the simulation domain, a 10-layer PML medium with polynomial attenuation grading from zero to 5x106 m3/kg/s was designed to reduce the reflection to as low as -60 and -32 dB in the axial and radial directions, respectively. The reflections at the axial and radial boundaries were 32 and 7 dB lower, respectively, for the 10-layer PML absorbing layer than for the first-order Mur's boundary condition.

Paper Details

Date Published: 28 February 2008
PDF: 8 pages
Proc. SPIE 6856, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 685619 (28 February 2008); doi: 10.1117/12.764416
Show Author Affiliations
Yae-Lin Sheu, National Taiwan Univ. (Taiwan)
Chen-Wei Wei, National Taiwan Univ. (Taiwan)
Chao-Kang Liao, National Taiwan Univ. (Taiwan)
Pai-Chi Li, National Taiwan Univ. (Taiwan)

Published in SPIE Proceedings Vol. 6856:
Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top