Share Email Print

Proceedings Paper

Observation of self-assembled periodic nano-structures induced by femtosecond laser in both ablation and deposition regimes
Author(s): Mingzhen Tang; Haitao Zhang; Tsing-Hua Her
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We observed the spontaneous formation of periodic nano-structures in both femtosecond laser ablation and deposition. The former involved 400-nm femtosecond pulses from a 250-KHz regenerated amplified mode-locked Ti:sapphire laser and periodic nanocracks and the nano-structure are in the form of periodic nanocracks in the substrate, the latter applied an 80-MHz mode-locked Ti:sapphire oscillator with pulse energy less than half nanojoule in a laser-induced chemical vapor deposition configuration and tungsten nanogratings grow heterogeneously on top of the substrates. These two observed periodic nanostructures have opposite orientations respecting to laser polarization: the periodic nanocracks are perpendicular to, whereas the deposited tungsten nanogratings are parallel to laser polarization direction. By translating the substrate respecting to the laser focus, both the periodic nanocrack and tungsten nanograting extend to the whole scanning range. The deposited tungsten nanogratings possess excellent uniformity on both the grating period and tooth length. Both the attributes can be tuned precisely by controlling the laser power and scanning speed. Furthermore, we discovered that the teeth of transverse tungsten nanogratings are self aligned along their axial direction during multiple scanning with appropriate offset between scans. We demonstrate the feasibility of fabricating large-area one-dimensional grating by exploiting such unique property. These distinct phenomena of nanocracks and tungsten nanogratings indicate different responsible mechanisms.

Paper Details

Date Published: 14 February 2008
PDF: 7 pages
Proc. SPIE 6879, Photon Processing in Microelectronics and Photonics VII, 68791J (14 February 2008); doi: 10.1117/12.763790
Show Author Affiliations
Mingzhen Tang, The Univ. of North Carolina at Charlotte (United States)
Haitao Zhang, The Univ. of North Carolina at Charlotte (United States)
Tsing-Hua Her, The Univ. of North Carolina at Charlotte (United States)

Published in SPIE Proceedings Vol. 6879:
Photon Processing in Microelectronics and Photonics VII
David B. Geohegan; Frank Träger; Jan J. Dubowski; Andrew S. Holmes; Michel Meunier; Craig B. Arnold; Hiroyuki Niino, Editor(s)

© SPIE. Terms of Use
Back to Top