Share Email Print

Proceedings Paper

Characterization of carbon nanotube thin films formed using electronic-grade carbon nanotube aqueous solutions
Author(s): Xuliang Han; Daniel C. Janzen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Carbon nanotubes (CNTs) are of great interests for a wide range of applications because of their unique structural, mechanical, electrical, optical, thermal, and chemical properties. Particularly, CNT thin films can be used as mechanically flexible, electrically conductive, and broadband optically transparent electrodes in various optoelectronic devices. However, one crucial obstacle to implementing CNT-based applications has been the unavailability of pure CNTs suitable for direct industrial use. The as-produced CNTs are very fluffy soot, and thus extremely difficult to be handled in the device fabrication process. Although CNTs can be grown directly on a substrate from the catalyst deposited on the substrate surface, the growing temperature is very high, typically > 900°C, which represents a big challenge to device fabrication and integration. Another issue is that the catalyst on the substrate surface must be removed without affecting the grown CNTs. In the raw CNT soot, there is always a considerable amount of impurities, including metallic particles from the catalyst and carbonaceous impurities from the chemical reaction by-products. Such impurities can greatly degrade the properties of CNT thin films. The production of electronic-grade CNT aqueous solutions, which contain only individually suspended pure CNTs without any kind of surfactant, is a critical milestone for implementing CNT-based applications. By using such solutions, pure CNT thin films of various densities can be formed through common solution-casting processes, such as spin coating, spray coating, micro-dispensing, and ink-jet printing. The properties of these pure CNT thin films will be discussed in this paper.

Paper Details

Date Published: 8 January 2008
PDF: 5 pages
Proc. SPIE 6838, Optoelectronic Devices and Integration II, 683811 (8 January 2008); doi: 10.1117/12.759714
Show Author Affiliations
Xuliang Han, Brewer Science, Inc. (United States)
Daniel C. Janzen, Brewer Science, Inc. (United States)

Published in SPIE Proceedings Vol. 6838:
Optoelectronic Devices and Integration II
Xuping Zhang; Hai Ming; Maggie Yihong Chen, Editor(s)

© SPIE. Terms of Use
Back to Top