Share Email Print
cover

Proceedings Paper

Mechanical quality factor of microcantilevers for mass sensing applications
Author(s): Jian Lu; Tsuyoshi Ikehara; Yi Zhang; Takashi Mihara; Ryutaro Maeda
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Mechanical quality factor (Q-factor) is essential to detect-limitation of a resonant based mass sensor because it determines signal to noise ratio. This paper studies the effects of different energy dissipation mechanisms, including air damping, support loss and thermoelastic damping (TED), on Q-factor of a microcantilever under atmospheric pressure conditions. The contribution of each mechanism was analyzed at various cantilever geometry. And the precondition to Z.Hao's model, which describes the support loss effect by elastic wave theory, was discussed. It was found that in 5 μm-thick silicon cantilevers, air damping was the predominant reason to energy dissipation when cantilever length was larger than 140 μm. The support loss and TED became noteworthy at shorter cantilevers when cantilever length to thickness ratio (L/t) was less than 20. Q-factor of a microcantilever thus can be improved by increasing the cantilever thickness to suppress air damping, but not infinitely because the support loss became comparable to air damping when cantilever thickness was increased. Moreover, it was found that the Q-factor of a multi-layered microcantilever was degraded markedly with the increase of layer numbers.

Paper Details

Date Published: 9 January 2008
PDF: 8 pages
Proc. SPIE 6800, Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV, 68001Y (9 January 2008); doi: 10.1117/12.759393
Show Author Affiliations
Jian Lu, National Institute of Advanced Industrial Science and Technology (Japan)
Tsuyoshi Ikehara, National Institute of Advanced Industrial Science and Technology (Japan)
Yi Zhang, National Institute of Advanced Industrial Science and Technology (Japan)
Takashi Mihara, Olympus Corp. (Japan)
Ryutaro Maeda, National Institute of Advanced Industrial Science and Technology (Japan)


Published in SPIE Proceedings Vol. 6800:
Device and Process Technologies for Microelectronics, MEMS, Photonics, and Nanotechnology IV
Hark Hoe Tan; Jung-Chih Chiao; Lorenzo Faraone; Chennupati Jagadish; Jim Williams; Alan R. Wilson, Editor(s)

© SPIE. Terms of Use
Back to Top