Share Email Print

Proceedings Paper

Modelling of dynamic targeting in the Air Operations Centre
Author(s): Edward H. S. Lo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Air Operations Centres (AOCs) are high stress multitask environments for planning and executing of theatre-wide airpower. Operators have multiple responsibilities to ensure that the orchestration of air assets is coordinated to maximum effect. AOCs utilise a dynamic targeting process to immediately prosecute time-sensitive targets. For this process to work effectively, a timely decision must be made regarding the appropriate course of action before the action is enabled. A targeting solution is typically developed using a number of inter-related processes in the kill chain - the Find, Fix, Track, Target, Engage, and Assess (F2T2EA) model. The success of making a right decision about dynamic targeting is ultimately limited by the cognitive and cooperative skills of the team prosecuting the mission and their associated workload. This paper presents a model of human interaction and tasks within the dynamic targeting sequence. The complex network of tasks executed by the team can be analysed by undertaking simulation of the model to identify possible information-processing bottlenecks and overloads. The model was subjected to various tests to generate typical outcomes, operator utilisation, duration as well as rates of output in the dynamic targeting process. This capability will allow for future "what-if" evaluations of numerous concepts for team formation or task reallocation, complementing live exercises and experiments.

Paper Details

Date Published: 5 January 2008
PDF: 10 pages
Proc. SPIE 6802, Complex Systems II, 680218 (5 January 2008); doi: 10.1117/12.759241
Show Author Affiliations
Edward H. S. Lo, Defence Science and Technology Organisation (Australia)

Published in SPIE Proceedings Vol. 6802:
Complex Systems II
Derek Abbott; Tomaso Aste; Murray Batchelor; Robert Dewar; Tiziana Di Matteo; Tony Guttmann, Editor(s)

© SPIE. Terms of Use
Back to Top