Share Email Print

Proceedings Paper

Diblock copolymers to deliver hydrophobic photosensitizers for photodynamic therapy
Author(s): Buhong Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Polymeric micelles, self-assemblies of block copolymers, are emerging as attractive drug delivery systems for hydrophobic photodynamic sensitizers. Recent advances in the formulation of photosensitizers for photodynamic therapy (PDT) with diblock copolymers are presented. This paper reviews the main characteristics of existing drug-loading micelles with diblock copolymers, including loading efficiency, particle size and morphology, stability, cellular uptake, subcellular distribution and therapeutic efficiency. The results indicate that diblock polymeric micelles are potentially useful for the delivery and release of hydrophobic photosensitizers in PDT. While significant progress has been achieved, many challenges remain in elucidating the detailed internalization mechanisms of the micelles and resulting mechanisms for enhanced photocytotoxicity. Some critical issues for diblock copolymers to deliver hydrophobic photosensitizers for PDT are highlighted.

Paper Details

Date Published: 8 January 2008
PDF: 6 pages
Proc. SPIE 6826, Optics in Health Care and Biomedical Optics III, 68261J (8 January 2008); doi: 10.1117/12.757914
Show Author Affiliations
Buhong Li, Fujian Normal Univ. (China)

Published in SPIE Proceedings Vol. 6826:
Optics in Health Care and Biomedical Optics III
Xingde Li; Qingming Luo; Ying Gu M.D., Editor(s)

© SPIE. Terms of Use
Back to Top