Share Email Print

Proceedings Paper

Theoretical study of intramolecular interactions on H-shape azobenzenes' first-order hyperpolarizabilities
Author(s): Feng Chu; Jing Zhu; Changgui Lu; Yiping Cui; Chaozhi Zhang; Guoyuan Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

First-order hyperpolarizabilities of H-shape azobenzenes in gas and in THF have been theoretically studied by Hartree-Fock method and basis set sto-3g with Onsager model, including 4,5-bis((E)-(4-nitrophenyl)diazenyl)anthracene-1,8-diol, 4,5-bis((E)-(4-(trifluoromethyl)phenyl)diazenyl)anthracene-1,8-diol, 4,5-bis((E)-(3-chloro-4-fluorophenyl)diazenyl) anthracene-1,8-diol and 4,5-bis((E)-(4-chlorophenyl)diazenyl)anthracene-1,8-diol. Compared with corresponding azobenzene monomers, H-shape azobenzenes had much larger first-order hyperpolarizabilities. There were four factors which could obviously influence their first-order hyperpolarizabilities. Firstly, H-shape azobenzenes possessed dihedral angles of approximate ten degrees caused by coulomb repulsions with weakening dipole's changes between ground states and excited states. Meanwhile, dihedral angle induced energy gap between HOMO and LUMO to increase. Secondly, dipole-dipole interaction was considered as perturbation which caused strong energy splitting of each molecular orbital with the lessening of energy gap. Thirdly, hyper-conjugated effect existed in H-shape azobenzene and it induced energy gap to decline. Fourthly, solvent effects could obviously enhance their first-order hyperpolarizabilities by comparing results in gas with results in THF. These factors competed and affected each other. The latter three factors lastly overcame coulomb repulsion, which explained that H-shape azobenzenes' first-order hyperpolarizabilities were much larger than corresponding monomers'.

Paper Details

Date Published: 4 January 2008
PDF: 6 pages
Proc. SPIE 6839, Nonlinear Optics: Technologies and Applications, 683921 (4 January 2008); doi: 10.1117/12.757559
Show Author Affiliations
Feng Chu, Southeast Univ. (China)
Jing Zhu, Southeast Univ. (China)
Changgui Lu, Southeast Univ. (China)
Yiping Cui, Southeast Univ. (China)
Chaozhi Zhang, Nanjing Univ. (China)
Guoyuan Lu, Nanjing Univ. (China)

Published in SPIE Proceedings Vol. 6839:
Nonlinear Optics: Technologies and Applications
Yiping Cui; Qihuang Gong; Yuen-Ron Shen, Editor(s)

© SPIE. Terms of Use
Back to Top