Share Email Print
cover

Proceedings Paper

Characteristics of high-peak pulsed laser induced damage to fibers
Author(s): Xinghai Zhao; Yang Gao; Meijian Xu; Wentao Duan; Haiwu Yu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The properties of high peak pulsed laser induced damage to fused-silica fibers are investigated using damage experiments. The laser source is Q-switched Nd:YAG pumped dye laser system, the pulse width is 15.2 ns, and the wavelength is 1064 nm. The experimental results show that all the damaging scenes are fiber entry faces. Damaging patterns can be classified as three types: pit damage, fusion damage and sputtering damage. Pit damage occurs most frequently. Scaffolding defects come into being pits when the laser irradiation is lower. Fusion damage is related to the laser energy, but sputtering damage occurs frequently when the laser energy or power density is very high (>107W/cm2~109W/cm2, ns pulse). The damage photos illustrate that fiber end damage is mainly due to laser ablation and gasification. Impurities of fiber material or contaminant particles adhere to fiber end are stress-raisers, which absorbed enough laser energy, make local temperature rises up quickly, ulterior fusion or gasification, and finally strong tensile stress. When stress goes beyond the tensile strength of fused-silica, damage occurs. The main damage mechanisms appear to be thermal effect and plasma ionization. The origin for the decline of laser induced-damage to fibers threshold appears to be extrinsic defect. The damage criterion and damage threshold test method are presented. The zero probability damage threshold is calculated by linear fitting, that is 58.6J/cm2. The damage process of fiber end faces could be divided into six steps. The origin for the decline of laser induced-damage to fibers threshold appears to be extrinsic defects which are closely related to the end-face quality.

Paper Details

Date Published: 4 January 2008
PDF: 7 pages
Proc. SPIE 6825, Lasers in Material Processing and Manufacturing III, 682516 (4 January 2008); doi: 10.1117/12.757076
Show Author Affiliations
Xinghai Zhao, Institute of Electronic Engineering (China)
Yang Gao, Institute of Electronic Engineering (China)
Meijian Xu, China Academy of Engineering Physics (China)
Wentao Duan, China Academy of Engineering Physics (China)
Haiwu Yu, China Academy of Engineering Physics (China)


Published in SPIE Proceedings Vol. 6825:
Lasers in Material Processing and Manufacturing III
ShuShen Deng; Akira Matsunawa; Xiao Zhu, Editor(s)

© SPIE. Terms of Use
Back to Top