Share Email Print
cover

Proceedings Paper

Probabilistic teleportation of two-unknown entangled atomic states without Bell-State measurement
Author(s): Xiao-Yan Zhou; Jian-Xing Fang; Hui-Ying Ni
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, we propose a protocol for teleportation of two unknown atomic states using non-maximally entangled states. We consider teleportation for atomic entangled states in cavity quantum electrodynamics (QED). Through analysis, we conclude that it could be succeed without joint BSM (Bell-State measurement). One BSM can be exactly converted into two separate atomic measurements on the two relevant atoms only by one step using the interaction between the atoms and atoms in the cavity. The most remarkable advantage of our scheme is that the teleportation and distillation procedure can be carried out concurrently. Suppose that the cavity mode is prepared in vacuum state. We can utilize the Hamiltonian for the system, discussing how to make teleportation successful. And we discuss the probability of reconstructing the initial state. We consider two identical two-level atoms simultaneously interacting with a single-mode cavity field. There is no energy exchange between the atomic system and the cavity, so we use the detuned interaction between atoms and atoms in cavity in the scheme which is insensitive to both the cavity decay and the thermal field. For the resonant cavity, in order to realize the teleportation successfully, the relationship between the teleportation time and the excited atom lifetime should take into consideration. The time required to complete the teleportation should much shorter than that of atom radiation. Hence, atom with a sufficiently long excited lifetime should be chosen. The discussion of the scheme indicates that it can be realized by current technologies.

Paper Details

Date Published: 26 November 2007
PDF: 7 pages
Proc. SPIE 6827, Quantum Optics, Optical Data Storage, and Advanced Microlithography, 68270M (26 November 2007); doi: 10.1117/12.756072
Show Author Affiliations
Xiao-Yan Zhou, Suzhou Univ. (China)
Jian-Xing Fang, Suzhou Univ. (China)
Hui-Ying Ni, Suzhou Univ. (China)


Published in SPIE Proceedings Vol. 6827:
Quantum Optics, Optical Data Storage, and Advanced Microlithography
Chris A. Mack; Jinfeng Kang; Jun-en Yao; Guangcan Guo; Song-hao Liu; Osamu Hirota; Guofan Jin; Kees A. Schouhamer Immink; Keiji Shono, Editor(s)

© SPIE. Terms of Use
Back to Top