Share Email Print
cover

Proceedings Paper

Quantitative fluorescence detection of phenylalanine in blood spots on filter paper
Author(s): Yuezhi Li; Fengjun Liu; Xuemin Wang; Gang Xu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Phenylketonuria is a genetic disease, which causes the metabolization disorder of phenylalanine, this disorder would damage the neural system of infants as a result of the accumulation of phenylalanine in blood. Therefore, it is of great importance to diagnose and treat phenylketonuria as early as possible for newborns. The aim of this paper is to develop a fluorescence detection system to measure blood phenylalanine concentration of new-born infants. In this design, a high luminance ultraviolet LED is used for excitation source, and a kind of bifurcated optical fiber assembly is applied for conduction of light. The excitation source is filtered and coupled into quartz fibers of the bifurcated fiber assembly for conduction of light to excite the fluorescence of phenylalanine in blood sample. The collected fluorescence is transmitted along the glass fibers of the assemblies and coupled to a photomultiplier tube. The fluorescence is filtered with 470~500 nm band-pass filter to subdue scattered excitation light and to limit the spectral width of the detected fluorescence. By the comparison with a standard instrument, the new system with low power consumption, low cost and small size is also proven sensitive and accurate, which meets the demand of clinical phenylketonuria screening.

Paper Details

Date Published: 8 January 2008
PDF: 6 pages
Proc. SPIE 6826, Optics in Health Care and Biomedical Optics III, 68262L (8 January 2008); doi: 10.1117/12.755063
Show Author Affiliations
Yuezhi Li, Shenzhen Univ. (China)
Fengjun Liu, Tianjin Univ. (China)
Xuemin Wang, Tianjin Univ. (China)
Gang Xu, Shenzhen Univ. (China)


Published in SPIE Proceedings Vol. 6826:
Optics in Health Care and Biomedical Optics III
Xingde Li; Qingming Luo; Ying Gu, Editor(s)

© SPIE. Terms of Use
Back to Top