Share Email Print

Proceedings Paper

Technological study of oxygen aided laser cutting silicon steel
Author(s): Lei Hong; Chenglong Mi; Gang Wu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is easy to produce molten dross by using traditional laser cutting technology in laser cutting silicon steel sheet. The main reason is that oxidizing reaction will take place inevitably by using oxygen as aided gas, so high pressure and high purity N2 or inert gases is used as aided cutting gas in laser cutting process. Although the cut quality is improved, the cutting efficiency is dropped because of the lack of energy resulting from an exothermic oxidation reaction. A fire new laser cutting technology by using an additional nozzle put under the workpiece that will form lateral gas flow to control the direction of the flowing dross gas is raised. In this technology oxygen is still used as aided gas, the laser power is reduced and the cut is fine. The experiments prove that by controlling the technical parameter reasonably, glossy and dross-free cutting kerfs are obtained. The gas flow acting under the workpiece is simulated by Finite Element Method (FEM). The varieties of pneumatic fields when the additional nozzle is in different degree and flow velocity are analyzed, which provides academic basis for controlling the flowing direction of the dross gas more reasonably. This laser cutting technology is practical and feasible.

Paper Details

Date Published: 4 January 2008
PDF: 10 pages
Proc. SPIE 6825, Lasers in Material Processing and Manufacturing III, 68250F (4 January 2008); doi: 10.1117/12.752774
Show Author Affiliations
Lei Hong, Shanghai Maritime Univ. (China)
Chenglong Mi, Shanghai Maritime Univ. (China)
Gang Wu, Shanghai Maritime Univ. (China)

Published in SPIE Proceedings Vol. 6825:
Lasers in Material Processing and Manufacturing III
ShuShen Deng; Akira Matsunawa; Xiao Zhu, Editor(s)

© SPIE. Terms of Use
Back to Top