Share Email Print

Proceedings Paper

Cascaded wavelength conversion based on cross-gain modulation and cross-phase modulation in SOAs
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

All-optical wavelength converters (AOWCs) that utilize nonlinearities in semiconductor optical amplifiers (SOAs) have attracted considerable research interest. AOWCs based on cross gain modulation (XGM) have a large dynamic range of the input optical signal power but a low extinction ratio (ER) and a high chirp, whereas AOWCs based on cross phase modulation (XPM) provide a low chirp and a high ER but suffer from a relative small input power dynamic range. We point out that there seems to be some complementarity between XGM and XPM. Based on this, we propose a novel scheme for cascaded wavelength conversion based on cross gain modulation and cross phase modulation in SOAs thus is expected to have a high ER and a large input power dynamic range simultaneously. The wavelength conversion operation includes two stages, that is, XGM in the first stage followed by the stage of XPM. In the XGM stage, we use a band pass filter to increase the frequency response of the SOA. In the XPM, we use the bidirectional input scheme for MZI to improve the response of XPM and cancel XGM-induced intensity unbalance to get a relative perfect interference.

Paper Details

Date Published: 19 November 2007
PDF: 9 pages
Proc. SPIE 6783, Optical Transmission, Switching, and Subsystems V, 67833D (19 November 2007); doi: 10.1117/12.743518
Show Author Affiliations
Zhaoxi Wu, Xiamen Univ. (China)
Yuanqing Huang, Xiamen Univ. (China)
Zihua Weng, Xiamen Univ. (China)
Huangping Yan, Xiamen Univ. (China)
Yiju Wang, Xiamen Univ. (China)
Jin Wan, Xiamen Univ. (China)
Ruifang Ye, Xiamen Univ. (China)

Published in SPIE Proceedings Vol. 6783:
Optical Transmission, Switching, and Subsystems V
Dominique Chiaroni; Wanyi Gu; Ken-ichi Kitayama; Chang-Soo Park, Editor(s)

© SPIE. Terms of Use
Back to Top