Share Email Print
cover

Proceedings Paper

Restoration of fluorescence images from two-photon microscopy using modified nonlinear anisotropic diffusion filter
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Two-photon laser scanning fluorescence microscopy is becoming a powerful tool in study of neuron functional imaging in vivo for its inherent deeper penetration, less photo-damage. Now, with the two-photon fluorescence images of brain tissue, we can reconstruct three-dimensional neuronal morphologies easily. However, the images usually are obscured by a lot of noise, in particular in deep tissue with strong excitation laser power. Therefore, good image restoration technique that could remove the noise while preserve neuronal structure is crucial for the results of subsequent image segmentation and neuron reconstruction. Here, we propose a modified nonlinear anisotropic diffusion filter which incorporates both gradient and gray-level variance of raw data, to remove the noise, rather than merely considers gradient as the classical Perona-Malik nonlinear anisotropic diffusion model. Experimental results have shown that the proposed scheme can remove noisy speckles effectively while maintain the shape of neuronal morphologies in two-photon fluorescence images without conflict.

Paper Details

Date Published: 1 May 2007
PDF: 8 pages
Proc. SPIE 6534, Fifth International Conference on Photonics and Imaging in Biology and Medicine, 65343H (1 May 2007); doi: 10.1117/12.741498
Show Author Affiliations
Hongmin Zhang, The Key Lab. of Biomedical Photonics, Huazhong Univ. of Science and Technology (China)
Qingming Luo, The Key Lab. of Biomedical Photonics, Huazhong Univ. of Science and Technology (China)
Shaoqun Zeng, The Key Lab. of Biomedical Photonics, Huazhong Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 6534:
Fifth International Conference on Photonics and Imaging in Biology and Medicine

© SPIE. Terms of Use
Back to Top