Share Email Print

Proceedings Paper

Scene identification and clear-sky compositing algorithms for generating North America coverage at 250m spatial resolution from MODIS land channels
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new technology has been developed at the Canada Centre for Remote Sensing (CCRS) for generating North America continental scale clear-sky composites at 250 m spatial resolution of all seven MODIS land spectral bands (B1-B7). The MODIS Level 1B (MOD02) swath level data were used as input to circumvent the problems with image distortion in the mid-latitude and polar regions inherent to the sinusoidal (SIN) projection utilized for the standard MODIS data products. The new data products are stored in the Lambert Conformal Conical (LCC) projection for Canada and the Lambert Azimuthal Equal-Area (LAEA) projection for North America. The MODIS 500m data (B3-B7) were downscaled to 250m resolution using an adaptive regression algorithm. The clear-sky composites are generated using scene identification information produced at 250m resolution and multi-criteria selection which depends on pixel identification. Cloud shadows were also identified and removed from output product. It is demonstrated that new approach provides better results than any scheme based on a single compositing criterion, such as maximum NDVI, minimum visible reflectance, or combination of them. To account for surface bi-directional properties, two clear-sky composites for same time period are produced for the relative azimuth angles within 90°-270° and outside of this interval. Comparison with Landsat imagery and MODIS standard composite products demonstrated advantages of new technique for screening cloud and cloud shadow and providing the high spatial resolution. The final composites were produced for every 10-day intervals since March 2000. The composite products have been used for mapping albedo and vegetation properties as well as for land cover and change detections applications at 250m scale.

Paper Details

Date Published: 27 September 2007
PDF: 11 pages
Proc. SPIE 6677, Earth Observing Systems XII, 66771N (27 September 2007); doi: 10.1117/12.739507
Show Author Affiliations
Yi Luo, Canada Ctr. for Remote Sensing (Canada)
Alexander P. Trishchenko, Canada Ctr. for Remote Sensing (Canada)
Konstantin V. Khlopenkov, Canada Ctr. for Remote Sensing (Canada)
William M. Park, Canada Ctr. for Remote Sensing (Canada)

Published in SPIE Proceedings Vol. 6677:
Earth Observing Systems XII
James J. Butler; Jack Xiong, Editor(s)

© SPIE. Terms of Use
Back to Top