Share Email Print

Proceedings Paper

Wavelet-based denoising using local Laplace prior
Author(s): Hossein Rabbani; Mansur Vafadust; Ivan Selesnick
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Although wavelet-based image denoising is a powerful tool for image processing applications, relatively few publications have addressed so far wavelet-based video denoising. The main reason is that the standard 3-D data transforms do not provide useful representations with good energy compaction property, for most video data. For example, the multi-dimensional standard separable discrete wavelet transform (M-D DWT) mixes orientations and motions in its subbands, and produces the checkerboard artifacts. So, instead of M-D DWT, usually oriented transforms suchas multi-dimensional complex wavelet transform (M-D DCWT) are proposed for video processing. In this paper we use a Laplace distribution with local variance to model the statistical properties of noise-free wavelet coefficients. This distribution is able to simultaneously model the heavy-tailed and intrascale dependency properties of wavelets. Using this model, simple shrinkage functions are obtained employing maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimators. These shrinkage functions are proposed for video denoising in DCWT domain. The simulation results shows that this simple denoising method has impressive performance visually and quantitatively.

Paper Details

Date Published: 20 September 2007
PDF: 9 pages
Proc. SPIE 6701, Wavelets XII, 67012H (20 September 2007); doi: 10.1117/12.739244
Show Author Affiliations
Hossein Rabbani, Amirkabir Univ. of Technology (Iran)
Mansur Vafadust, Amirkabir Univ. of Technology (Iran)
Ivan Selesnick, Polytechnic Univ. (United States)

Published in SPIE Proceedings Vol. 6701:
Wavelets XII
Dimitri Van De Ville; Vivek K. Goyal; Manos Papadakis, Editor(s)

© SPIE. Terms of Use
Back to Top