Share Email Print
cover

Proceedings Paper

Transfer printing as a method for fabricating hybrid devices on flexible substrates
Author(s): D. R. Hines; A. E. Southard; A. Tunnell; V. Sangwan; T. Moore; J.-H. Chen; M. S. Fuhrer; E. D. Williams
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Printing methods are becoming important in the fabrication of flexible electronics. A transfer printing method has been developed for the fabrication of organic thin-film transistors (OTFT), capacitors, resistors and inductors onto plastic substrates. The method relies primarily on differential adhesion for the transfer of a printable layer from a transfer substrate to a device substrate. A range of materials applications is illustrated, including metals, organic semiconductors, organic dielectrics, nanotube and nanowire mats, a patterned inorganic semiconductor and graphene. Transfer printing can be used to create complex structures including many disparate materials sequentially printed onto the flexible substrate, with no mixed processing steps performed on the device substrate. Specifically, the fabrication and performance of model OTFT devices consisting of a polyethylene terephthalate (PET) substrate, gold (Au) gate and source/drain electrodes, a poly(methyl methacrylate) (PMMA) dielectric layer and either a pentacene (Pn) or a poly(3- hexylthiophene) (P3HT) organic semiconductor layer will be presented. These transfer printed OTFTs on plastic outperform non-printed devices on a Si substrate with a SiO2 dielectric layer (SiO2/Si). Transfer printed Pn OTFTs on a plastic substrate have exhibited mobilities of 0.237 cm2/Vs, compared to non-printed Pn OTFTs on a SiO2/Si substrate with mobilities of 0.1 cm2/Vs. Transfer printed P3HT TFTs on a plastic substrate have exhibited mobilites of 0.04 cm2/Vs, compared to non-printed P3HT TFTs on a SiO2/Si substrate with mobilities of 0.007 cm2/Vs.

Paper Details

Date Published: 13 September 2007
PDF: 11 pages
Proc. SPIE 6658, Organic Field-Effect Transistors VI, 66580Y (13 September 2007); doi: 10.1117/12.739100
Show Author Affiliations
D. R. Hines, Univ. of Maryland, College Park (United States)
A. E. Southard, Univ. of Maryland, College Park (United States)
A. Tunnell, Univ. of Maryland, College Park (United States)
V. Sangwan, Univ. of Maryland, College Park (United States)
T. Moore, Univ. of Maryland, College Park (United States)
J.-H. Chen, Univ. of Maryland, College Park (United States)
M. S. Fuhrer, Univ. of Maryland, College Park (United States)
E. D. Williams, Univ. of Maryland, College Park (United States)


Published in SPIE Proceedings Vol. 6658:
Organic Field-Effect Transistors VI
Zhenan Bao; David J. Gundlach, Editor(s)

© SPIE. Terms of Use
Back to Top