Share Email Print

Proceedings Paper

Discrete adaptive zone light elements (DAZLE): a new approach to adaptive imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New advances in Liquid Crystal Spatial Light Modulators (LCSLM) offer opportunities for large adaptive optics in the midwave infrared spectrum. A light focusing adaptive imaging system, using the zero-order diffraction state of a polarizer-free liquid crystal polarization grating modulator to create millions of high transmittance apertures, is envisioned in a system called DAZLE (Discrete Adaptive Zone Light Elements). DAZLE adaptively selects large sets of LCSLM apertures using the principles of coded masks, embodied in a hybrid Discrete Fresnel Zone Plate (DFZP) design. Issues of system architecture, including factors of LCSLM aperture pattern and adaptive control, image resolution and focal plane array (FPA) matching, and trade-offs between filter bandwidths, background photon noise, and chromatic aberration are discussed.

Paper Details

Date Published: 1 October 2007
PDF: 12 pages
Proc. SPIE 6714, Adaptive Coded Aperture Imaging and Non-Imaging Sensors, 67140H (1 October 2007); doi: 10.1117/12.738413
Show Author Affiliations
Robert L. Kellogg, Argon ST Inc. (United States)
Michael J. Escuti, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 6714:
Adaptive Coded Aperture Imaging and Non-Imaging Sensors
David P. Casasent; Timothy Clark, Editor(s)

© SPIE. Terms of Use
Back to Top