Share Email Print

Proceedings Paper

EARLINET correlative measurements for CALIPSO
Author(s): Ina Mattis; Lucia Mona; Detlef Müller; Gelsomina Pappalardo; Lucas Alados-Arboledas; Giuseppe D'Amico; Aldo Amodeo; Arnoud Apituley; José Maria Baldasano; Christine Böckmann; Jens Bösenberg; Anatoli Chaikovsky; Adolfo Comeron; Elina Giannakaki; Ivan Grigorov; Juan Luis Guerrero Rascado; Ove Gustafsson; Marco Iarlori; Holger Linne; Valentin Mitev; Francisco Molero Menendez; Doina Nicolae; Alexandros Papayannis; Carlos Perez Garcia-Pando; Maria Rita Perrone; Aleksander Pietruczuk; Jean-Philippe Putaud; Francois Ravetta; Alejandro Rodríguez; Patric Seifert; Michaël Sicard; Valentin Simeonov; Piotr Sobolewski; Nicola Spinelli; Kerstin Stebel; Andreas Stohl; Matthias Tesche; Thomas Trickl; Xuan Wang; Matthias Wiegner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The European Aerosol Research Lidar Network (EARLINET) was established in 2000 to derive a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on the European scale. At present, EARLINET consists of 25 stations: 16 Raman lidar stations, including 8 multi-wavelength Raman lidar stations which are used to retrieve aerosol microphysical properties. EARLINET performs a rigorous quality assurance program for instruments and evaluation algorithms. All stations measure simultaneously on a predefined schedule at three dates per week to obtain unbiased data for climatological studies. Since June 2006 the first backscatter lidar is operational aboard the CALIPSO satellite. EARLINET represents an excellent tool to validate CALIPSO lidar data on a continental scale. Aerosol extinction and lidar ratio measurements provided by the network will be particularly important for that validation. The measurement strategy of EARLINET is as follows: Measurements are performed at all stations within 80 km from the overpasses and additionally at the lidar station which is closest to the actually overpassed site. If a multi-wavelength Raman lidar station is overpassed then also the next closest 3+2 station performs a measurement. Altogether we performed more than 1000 correlative observations for CALIPSO between June 2006 and June 2007. Direct intercomparisons between CALIPSO profiles and attenuated backscatter profiles obtained by EARLINET lidars look very promising. Two measurement examples are used to discuss the potential of multi-wavelength Raman lidar observations for the validation and optimization of the CALIOP Scene Classification Algorithm. Correlative observations with multi-wavelength Raman lidars provide also the data base for a harmonization of the CALIPSO aerosol data and the data collected in future ESA lidar-in-space missions.

Paper Details

Date Published: 17 October 2007
PDF: 12 pages
Proc. SPIE 6750, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, 67500Z (17 October 2007); doi: 10.1117/12.738090
Show Author Affiliations
Ina Mattis, Leibniz Institute for Tropospheric Research (Germany)
Lucia Mona, Istituto di Metodologie per l’Analisi Ambientale (Italy)
Detlef Müller, Leibniz Institute for Tropospheric Research (Germany)
Gelsomina Pappalardo, Istituto di Metodologie per l’Analisi Ambientale (Italy)
Lucas Alados-Arboledas, Univ. de Granada (Spain)
Giuseppe D'Amico, Istituto di Metodologie per l’Analisi Ambientale (Italy)
Aldo Amodeo, Istituto di Metodologie per l’Analisi Ambientale (Italy)
Arnoud Apituley, National Institute for Public Health and the Environment (Netherlands)
José Maria Baldasano, Barcelona Supercomputing Center (Spain)
Christine Böckmann, Univ. Potsdam (Germany)
Jens Bösenberg, Max-Planck-Institut für Meteorologie (Germany)
Anatoli Chaikovsky, Institute of Physics National Academy of Sciences (Belarus)
Adolfo Comeron, Univ. Politecnica de Catalunya (Spain)
Elina Giannakaki, Aristotle Univ. of Thessaloniki (Greece)
Ivan Grigorov, Institute of Electronics, BAS (Bulgaria)
Juan Luis Guerrero Rascado, Univ. de Granada (Spain)
Ove Gustafsson, Swedish Defence Research Agency (FOI) (Sweden)
Marco Iarlori, Univ. degli Studi L'Aquila (Italy)
Holger Linne, Max-Planck-Institut für Meterologie (Germany)
Valentin Mitev, Observatory of Neuchâtel (Switzerland)
Francisco Molero Menendez, Atmospheric Pollution Unit Environmental Department CIEMAT (Spain)
Doina Nicolae, National Institute of R&D for Optoelectronics (Romania)
Alexandros Papayannis, Ethnikon Metsovion Polytechnion Athinon (Greece)
Carlos Perez Garcia-Pando, Barcelona Supercomputing Center (Spain)
Maria Rita Perrone, Univ. degli Studi di Lecce (Italy)
Aleksander Pietruczuk, Institute of Geophysics, Polish Academy of Sciences (Poland)
Jean-Philippe Putaud, JRC Institute for Environment and Sustainability (Italy)
Francois Ravetta, Institute Pierre Simon Laplace (France)
Alejandro Rodríguez, Univ. Politecnica de Catalunya (Spain)
Patric Seifert, Leibniz Institute for Tropospheric Research (Germany)
Michaël Sicard, Univ. Politecnica de Catalunya (Spain)
Valentin Simeonov, École Polytechnique Fédérale de Lausanne (Switzerland)
Piotr Sobolewski, Institute of Geophysics, Polish Academy of Sciences (Poland)
Nicola Spinelli, CNSFM, Unita di Napoli and Univ. di Napoli Federico II (Italy)
Kerstin Stebel, Norwegian Institute for Air Research (Norway)
Andreas Stohl, Norwegian Institute for Air Research (Norway)
Matthias Tesche, Leibniz Institute for Tropospheric Research (Germany)
Thomas Trickl, Forschungszentrum Karlsruhe, IMK-IFU (Germany)
Xuan Wang, CNISM and CRS-Coherentia, CNR-INFM (Italy)
Matthias Wiegner, Meteorological Institute, Univ. of Munich (Germany)

Published in SPIE Proceedings Vol. 6750:
Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III
Upendra N. Singh; Gelsomina Pappalardo, Editor(s)

© SPIE. Terms of Use
Back to Top