Share Email Print
cover

Proceedings Paper

Cloud top height estimation using simulated METEOSAT-8 radiances
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Atmospheric Motion Vectors (AMVs) are one of the most important products generally derived from geostationary satellites, and especially from Meteosat at EUMETSAT, because they constitute a very important part of the observational data fed to Numerical Weather Prediction. The height estimation or 'assignment' (HA) is still the most challenging task in the AMV extraction scheme. The advent of Meteosat Second Generation provides many new opportunities for improving the HA of AMVs. Indeed, the existence of a CO2 absorption channel at 13.4 μm on the SEVIRI instrument enables the simultaneous use of the IR/CO2 ratioing methodology in addition to the 'WV-IRW intercept method' (also called STC), for semi-transparent cases. Due to the existence of several Water Vapour and Infrared channels on SEVIRI, each method is implemented in slightly different configuration, and several pressures are then calculated for each AMV. It was expected at first to use the agreement of these pressures as a quality check for the final AMV height. Unfortunately, the various methods (STC and CO2 slicing) have clearly their own sensitivity and domain of application, which makes a quality check very challenging. It appeared then necessary to define these domains of application more precisely, in order that better use may be made of these methods operationally. This paper presents such results using simulated SEVIRI radiances calculated by the FASDOM radiative transfer code. FASDOM accounts for gaseous absorption as well as cloud scattering and absorption and can precisely consider various types of clouds with various microphysical properties. We then have the possibility to compare the outputs of the HA methods knowing precisely the input to the model, especially the pressure of the simulated cloud.

Paper Details

Date Published: 25 October 2007
PDF: 9 pages
Proc. SPIE 6745, Remote Sensing of Clouds and the Atmosphere XII, 67450J (25 October 2007); doi: 10.1117/12.737801
Show Author Affiliations
Régis Borde, EUMETSAT (Germany)
Philippe Dubuisson, Univ. du Littoral Côte d'Opale (France)


Published in SPIE Proceedings Vol. 6745:
Remote Sensing of Clouds and the Atmosphere XII
Adolfo Comerón; Richard H. Picard; Klaus Schäfer; James R. Slusser; Aldo Amodeo, Editor(s)

© SPIE. Terms of Use
Back to Top