Share Email Print
cover

Proceedings Paper

Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence
Author(s): Guoying Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.

Paper Details

Date Published: 25 September 2007
PDF: 8 pages
Proc. SPIE 6756, Chemical and Biological Sensors for Industrial and Environmental Monitoring III, 675605 (25 September 2007); doi: 10.1117/12.735092
Show Author Affiliations
Guoying Chen, USDA Agricultural Research Service (United States)


Published in SPIE Proceedings Vol. 6756:
Chemical and Biological Sensors for Industrial and Environmental Monitoring III
Kenneth J. Ewing; James B. Gillespie; Pamela M. Chu; William J. Marinelli, Editor(s)

© SPIE. Terms of Use
Back to Top