Share Email Print

Proceedings Paper

Optical module HEW simulations for the X-ray telescopes SIMBOL-X, EDGE and XEUS
Author(s): D. Spiga
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One of the most important parameters defining the angular resolution of an X-ray optical module is its Half-Energy Width (HEW) as a function of the photon energy. Future X-ray telescopes with imaging capabilities (SIMBOL-X, Constellation-X, NeXT, EDGE, XEUS,...) should be characterized by a very good angular resolution in soft (< 10 keV) and hard (> 10 keV) X-rays. As a consequence, an important point in the optics development for these telescopes is the simulation of the achievable HEW for a system of X-ray mirrors. This parameter depends on the single mirror profile and nesting accuracy, but also on the mirrors surface microroughness that causes X-ray Scattering (XRS). In particular, owing to its dependence on the photon energy, XRS can dominate the profile errors in hard X-rays: thus, its impact has to be accurately evaluated in every single case, in order to formulate surface finishing requirements for X-ray mirrors. In this work we provide with some simulations of the XRS term of the HEW for some future soft and hard X-ray telescopes.

Paper Details

Date Published: 21 September 2007
PDF: 10 pages
Proc. SPIE 6688, Optics for EUV, X-Ray, and Gamma-Ray Astronomy III, 66880K (21 September 2007); doi: 10.1117/12.734854
Show Author Affiliations
D. Spiga, INAF-Osservatorio Astronomico di Brera (Italy)

Published in SPIE Proceedings Vol. 6688:
Optics for EUV, X-Ray, and Gamma-Ray Astronomy III
Stephen L. O'Dell; Giovanni Pareschi, Editor(s)

© SPIE. Terms of Use
Back to Top