Share Email Print

Proceedings Paper

The development of a heterodyne velocimeter system for use in sub-microsecond time regimes
Author(s): M. D. Bowden; M. P. Maisey
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent advances over the last five years in high-speed digitizing oscilloscopes and high-bandwidth photodiodes, driven primarily by the telecommunications industry, have enabled the development of a new type of interferometer for measuring high velocities, such as those found in detonics experiments. The heterodyne velocimeter can be visualized as a fiber-based Michelson interferometer. The beam from a single-mode fiber laser at 1550 nm is passed through a circulator, acting to separate bi-directional light. The beam is then reflected via free-space optics from the surface of interest, and then focused back into the same fiber. This reflected light is mixed with an approximately equal amount of non-reflected light, and the resulting interference is recorded using a high-bandwidth photodiode and oscilloscope. In contrast to more traditional velocimetry techniques such as VISAR, only a single data channel is required per probe. The uses of heterodyne velocimetry have, to date, been primarily in the multi-microsecond time regime, i.e. explosively driven metal plates. In this paper, we present a four-channel, ultra-high bandwidth system designed for use in the sub-microsecond time regime, and present the results obtained from laser-driven flyer plates traveling in excess of 3 km s-1. We have developed analysis software suited to use in this time regime, where a relatively small displacement is recorded. The original heterodyne velocimeter relied on back-reflectance from the probe to obtain the non-reflected light. This limits both the flexibility of the system and the efficiency of the probes. We have overcome this issue by introducing a beam splitter into the system prior to the circulator. This allows the probing system to be designed for maximum efficiency, and we are then able to tune the non-reflected light on a shot-to-shot basis.

Paper Details

Date Published: 13 September 2007
PDF: 12 pages
Proc. SPIE 6662, Optical Technologies for Arming, Safing, Fuzing, and Firing III, 66620B (13 September 2007); doi: 10.1117/12.734194
Show Author Affiliations
M. D. Bowden, Atomic Weapons Establishment (United Kingdom)
M. P. Maisey, Atomic Weapons Establishment (United Kingdom)

Published in SPIE Proceedings Vol. 6662:
Optical Technologies for Arming, Safing, Fuzing, and Firing III
William J. Thomes; Fred M. Dickey, Editor(s)

© SPIE. Terms of Use
Back to Top