Share Email Print
cover

Proceedings Paper

Design of asymmetrically loaded end-plates with vacuum seal surfaces for the Navy Prototype Optical Interferometer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Engineering specifications for O-ring seal surfaces are well documented. However, when seal surfaces are located on asymmetrically loaded vacuum end-plates, consideration must be given not only to surface finish and flatness, but also to load-induced deflections. When deflections are significant, O-ring compression can relax and potentially cause vacuum leaks. Large vacuum systems, such as the 9000 cubic foot system at the Navy Prototype Optical Interferometer (NPOI), cannot afford costly vacuum leaks due to improper end-plate design. The NPOI employs vacuum end-plates that serve both as structural members, and as vacuum system entrance and exit ports for stellar light. These ports consist of vacuum components attached directly to the end-plate via static O-ring sealing techniques. Optical geometry dictates off-center port locations, which create asymmetric end-plate loading. This paper details the behavior of a 22 inch diameter, multi-port, end-plate for the NPOI Fast Delay Line subsystem. In depth CAD modeling and finite element analysis techniques were used to determine load-induced stress distributions and deflections in the end-plate. After several design iterations, an end-plate design was substantiated that maintains vacuum seal integrity under loading, exhibits a conservative factor of safety, and is readily manufacturable.

Paper Details

Date Published: 17 September 2007
PDF: 7 pages
Proc. SPIE 6665, New Developments in Optomechanics, 666513 (17 September 2007); doi: 10.1117/12.733962
Show Author Affiliations
Joshua P. Walton, Interferometrics Inc. (United States)
James H. Clark, Naval Reserach Lab. (United States)
F. Ernesto Penado, Northern Arizona Univ. (United States)


Published in SPIE Proceedings Vol. 6665:
New Developments in Optomechanics
Alson E. Hatheway, Editor(s)

© SPIE. Terms of Use
Back to Top