Share Email Print

Proceedings Paper

Radiometric characterization of ultra-bright xenon short-arc discharge lamps for novel applications
Author(s): Doron Nakar; Asher Malul; Daniel Feuermann; Jeffrey M. Gordon
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The latest generations of ultra-bright Xenon short-arc discharge lamps have prodigious emissions outside the visible spectrum, primarily in the near infrared. Their brightness distributions are spatially and angularly inhomogeneous due to both the pronounced non-uniformities of the plasma arc and the substantial infrared radiation from the hot electrodes. These characteristics are fortuitously favorable for applications in photonic surgery, biomedical diagnostics, high-temperature chemical reactors and furnaces: cases where the full lamp spectrum is utilizable, and the key is reconstituting the spectral power density of the optimal regions of the lamp's plasma at a remote target. The associated optical systems must be tailored to lamp radiometric properties that are not extensively available and invariably are restricted to visible light due to their widespread use in projection systems. We present experimental measurements for the spectral, spatial and angular distributions of 150 W lamps of this genre, and relate to their ramifications for broadband high-flux applications.

Paper Details

Date Published: 18 September 2007
PDF: 8 pages
Proc. SPIE 6670, Nonimaging Optics and Efficient Illumination Systems IV, 66700G (18 September 2007); doi: 10.1117/12.733078
Show Author Affiliations
Doron Nakar, Ben-Gurion Univ. of the Negev (Israel)
Asher Malul, Ben-Gurion Univ. of the Negev (Israel)
Daniel Feuermann, Ben-Gurion Univ. of the Negev (Israel)
Jeffrey M. Gordon, Ben-Gurion Univ. of the Negev (Israel)

Published in SPIE Proceedings Vol. 6670:
Nonimaging Optics and Efficient Illumination Systems IV
Roland Winston; R. John Koshel, Editor(s)

© SPIE. Terms of Use
Back to Top