Share Email Print
cover

Proceedings Paper

Beam combination for Stellar Imager and its application to full-aperture imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Stellar Imager (SI) will be a Space-Based telescope consisting of 20 to 30 separated apertures. It is designed for UV/Optical imaging of stellar surfaces and asteroseismology. This report describes details of an alternative optical design for the beam combiner, dubbed the Spatial Frequency Remapper (SFR). It sacrifices the large field of view of the Fizeau combiner. In return, spectral resolution is obtained with a diffraction grating rather than an array of energy-resolving detectors. The SFR design works in principle and has been implemented with MIRC at CHARA for a small number of apertures. Here, we show the number of optical surfaces can be reduced and the concept scales gracefully to the large number of apertures needed for Stellar Imager. We also describe a potential application of this spatial frequency remapping to improved imaging with filled-aperture systems. For filled-aperture imaging, the SFR becomes the core of an improved aperture masking system. To date, aperture-masking has produced the best images with ground-based telescopes but at the expense of low sensitivity due to short exposures and the discarding of most of the light collected by the telescope. This design eliminates the light-loss problem previously claimed to be inherent in all aperture-masking designs. We also argue that at least in principle, the short-integration time limit can also be overcome. With these improvements, it becomes an ideal camera for TPF-C; since it can form speckle-free images in the presence of wavefront errors, it should significantly relax the stability requirements of the current designs.

Paper Details

Date Published: 20 September 2007
PDF: 8 pages
Proc. SPIE 6687, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, 66870K (20 September 2007); doi: 10.1117/12.732833
Show Author Affiliations
D. Mozurkewich, Seabrook Engineering (United States)
K. G. Carpenter, NASA Goddard Space Flight Ctr. (United States)
R. G. Lyon, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 6687:
UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III
Howard A. MacEwen; James B. Breckinridge, Editor(s)

© SPIE. Terms of Use
Back to Top