Share Email Print
cover

Proceedings Paper

Interferometry for wafer dimensional metrology
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Wafer shape and thickness variation are important parameters in the IC manufacturing process. The thickness variation, also called flatness, enters the depth-of-focus budget of microlithography, and also affects film thickness uniformity in the CMP processing. The shape mainly affects wafer handling, and may also require some depth-of-focus if the wafer shape is not perfectly flattened by chucking. In the progression of technology nodes to smaller feature sizes, and hence smaller depth-of-focus of the lithography tool, the requirement for the PV-flatness over stepper exposure sites is becoming progressively tighter, and has reached 45nm for the next technology node of 45nm half pitch. Consequently, in order to be gauge-capable the flatness metrology tool needs to provide a measurement precision of the order of 1nm. Future technology nodes will require wafers with even better flatness and metrology tools with better measurement precision. For the last several years the common capacitive tools for wafer dimensional metrology have been replaced by interferometric tools with higher sensitivity and resolution. In the interferometric tools the front and back surface figure of the wafer is measured simultaneously while the wafer is held vertically in its intrinsic shape. The thickness variation and shape are then calculated from these single-sided maps. The wafer shape, and hence each wafer surface figure, can be tens of microns, necessitating a huge dynamic range of the interferometer when considering the 1nm measurement precision. Furthermore, wafers are very flexible, and hence very prone to vibrations as well as bending. This presentation addresses these special requirements of interferometric wafer measurements, and discusses the system configuration and measurement performance of WaferSightTM, KLA-Tencor's interferometric dimensional metrology tool for 300mm wafers for current and future technology nodes.

Paper Details

Date Published: 10 September 2007
PDF: 14 pages
Proc. SPIE 6672, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies III, 667202 (10 September 2007); doi: 10.1117/12.732546
Show Author Affiliations
Klaus Freischlad, KLA-Tencor (United States)
Shouhong Tang, KLA-Tencor (United States)
Jim Grenfell, KLA-Tencor (United States)


Published in SPIE Proceedings Vol. 6672:
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies III
Angela Duparré; Bhanwar Singh; Zu-Han Gu, Editor(s)

© SPIE. Terms of Use
Back to Top