Share Email Print

Proceedings Paper

Crop yield monitoring based on a photosynthetic sterility model using NDVI and daily meteorological data
Author(s): Daijiro Kaneko
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This research is intended to develop a model to monitor rice yields using the photosynthetic yield index, which integrates solar radiation and air temperature effects on photosynthesis and grain-filling from heading to ripening. Monitoring crop production using remotely sensed and daily meteorological data can provide an important early warning of poor crop production to Asian countries, with their still-growing populations, and also to Japan, which produces insufficient grain for its population. The author improved a photosynthesis-and-sterility-based crop production CPI index to crop yield index CYI, which estimates rice yields, in place of the crop situation index CSI. The CSI gives a percentage of rice yields compared to normal annual production. The model calculates photosynthesis rates including biomass effects, lowtemperature sterility, and high-temperature injury by incorporating: solar radiation, effective air temperature, normalized difference vegetation index NDVI, and the effect of temperature on photosynthesis by grain plant leaves. The method is based on routine observation data, enabling automated monitoring of crop production at arbitrary regions without special observations. The method aims to quantity grain production at an early stage to raise the alarm in Asian countries, which are facing climate fluctuation through this century of global warming.

Paper Details

Date Published: 9 October 2007
PDF: 12 pages
Proc. SPIE 6742, Remote Sensing for Agriculture, Ecosystems, and Hydrology IX, 67420F (9 October 2007); doi: 10.1117/12.731312
Show Author Affiliations
Daijiro Kaneko, Matsue National College of Technology (Japan)

Published in SPIE Proceedings Vol. 6742:
Remote Sensing for Agriculture, Ecosystems, and Hydrology IX
Christopher M. U. Neale; Manfred Owe; Guido D'Urso, Editor(s)

© SPIE. Terms of Use
Back to Top