Share Email Print

Proceedings Paper

Tunable far-IR detectors/filters based on plasmons in two-dimensional electron gases in InGaAs/InP heterostructures
Author(s): W. R. Buchwald; H. Saxena; R. E. Peale
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Plasmons can be generated with photons in the two dimensional electron gas (2-deg) of high electron mobility transistors (HEMTs). Because the plasmon frequency at a given wavevector depends on sheet charge density, a gate bias can tune the plasmon resonance. This effect allows a properly designed HEMT to be used as a voltage-tunable narrow-band detector or filter. This work reports on both the theory and design of such a device in the InP materials system and discusses its potential uses. By using a sub-micron grating to couple incident radiation to a high sheet charge 2-deg, a minimum detectible wavelength of roughly 26 microns is obtained. Fabrication issues, terahertz response, and tunability are discussed. Because of its small size, this novel device could find use in spaceborne remote sensing application.

Paper Details

Date Published: 26 September 2007
PDF: 10 pages
Proc. SPIE 6678, Infrared Spaceborne Remote Sensing and Instrumentation XV, 66780V (26 September 2007); doi: 10.1117/12.729298
Show Author Affiliations
W. R. Buchwald, Air Force Research Lab. (United States)
H. Saxena, Univ. of Central Florida (United States)
R. E. Peale, Univ. of Central Florida (United States)

Published in SPIE Proceedings Vol. 6678:
Infrared Spaceborne Remote Sensing and Instrumentation XV
Marija Strojnik-Scholl, Editor(s)

© SPIE. Terms of Use
Back to Top