Share Email Print

Proceedings Paper

Verification of the modified model of drying process of a polymer liquid film on a flat substrate by experiment (3) - using organic solvent
Author(s): Hiroyuki Kagami
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004, Smart Materials, Nano-, and Micro-Smart Systems 2006 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we did a few kinds of experiments so as to verify the modified model and reported the results of them through Photomask Japan 2005 and 2006. We could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying. After some trial of various improved experiments we reached the conclusion that the characteristic region didn't appear by reason that water which vaporized slower than organic solvent was used as solvent. Then, in this study, we adopted organic solvent instead of water as solvent for experiments. As a result, that the characteristic region as mentioned above could be seen and we could verify the model more accurately. In this paper, we present verification of the model through above improved experiments for verification using organic solvent.

Paper Details

Date Published: 14 May 2007
PDF: 8 pages
Proc. SPIE 6607, Photomask and Next-Generation Lithography Mask Technology XIV, 66071X (14 May 2007); doi: 10.1117/12.728980
Show Author Affiliations
Hiroyuki Kagami, Nagoya College (Japan)

Published in SPIE Proceedings Vol. 6607:
Photomask and Next-Generation Lithography Mask Technology XIV
Hidehiro Watanabe, Editor(s)

© SPIE. Terms of Use
Back to Top