Share Email Print
cover

Proceedings Paper

Space-time modeling of the photon diffusion in a three-layered model: application to the study of muscular oxygenation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This work presents results on the modeling of the photon diffusion in a three-layered model, (skin, fat and muscle). The Finite Element method was performed in order to calculate the temporal response of the above-mentioned structure. The thickness of the fat layer was varied from 1 to 15 mm to investigate the effects of increasing fat thickness on the muscle layer absorption coefficient measurements for a source-detector spacing of 30 mm. The simulated time-resolved reflectance data, at different wavelengths, were fitted to the diffusion model to yield the scattering and absorption coefficients of muscle. The errors in estimating muscle absorption coefficients &mgr;α depend on the thickness of the fat layer and its optical properties. In addition, it was shown that it is possible to recover with a good precision (~2.6 % of error) the absorption coefficient of muscle and this up to a thickness of the fat layer not exceeding 4mm. Beyond this limit a correction is proposed in order to make measurements coherent. The muscle-corrected absorption coefficient can be then used to calculate hemoglobin oxygenation.

Paper Details

Date Published: 13 July 2007
PDF: 8 pages
Proc. SPIE 6632, Therapeutic Laser Applications and Laser-Tissue Interactions III, 66320E (13 July 2007); doi: 10.1117/12.728638
Show Author Affiliations
C. Mansouri, Groupe ISAIP-ESAIP (France)
J. P. L'Huillier, Ecole Nationale Supérieure d’Arts et Métiers (France)
V. Piron, Ecole Nationale Supérieure d’Arts et Métiers (France)


Published in SPIE Proceedings Vol. 6632:
Therapeutic Laser Applications and Laser-Tissue Interactions III
Alfred Vogel, Editor(s)

© SPIE. Terms of Use
Back to Top