Share Email Print
cover

Proceedings Paper

Contribution of various scattering orders to OCT images of skin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Simulated OCT images of skin were obtained implementing Monte Carlo simulations. The multilayer skin model used in simulations was based on the experimental OCT images obtained at the wavelength of 910 nm. The following skin layers were considered in the model: stratum corneum, epidermis prickle layer, epidermis basal layer, dermis with upper plexus, dermis, and dermis with lower plexus. The images were obtained both with and without speckle accounting. The latter case is calculated from the envelopes of calculated interference signals while the former accounts for the interference fringe patterns. The contributions of least and multiple scattering, diffusive and non-diffusive components of the backscattered light to the resulting OCT image were separated and analyzed. It was shown that least scattering contribution represents the imaging of the upper skin layers, while multiple scattering contribution can be characterized as blurred image with reduced contrast preserving, however, essential details. The least scattering component contributes to the image for optical depth up to 1 mm. From the analysis of the contribution of non-diffusive and diffusive components it follows that the diffusive component contributes to imaging the object starting from the epidermis basal layer and is more blurred compared to the multiple scattering contribution. The non-diffusive component contributes to the image for optical depth up to 1.3 mm. The effect of coherence length on the contributions of least and multiple scattering was also studied. It was shown, that contribution of multiple scattering increases with a decrease of the coherence length.

Paper Details

Date Published: 11 July 2007
PDF: 7 pages
Proc. SPIE 6627, Optical Coherence Tomography and Coherence Techniques III, 66270Q (11 July 2007); doi: 10.1117/12.728474
Show Author Affiliations
Mikhail Yu. Kirillin, Univ. of Oulu (Finland)
M.V. Lomonosov Moscow State Univ. (Russia)
Alexander V. Priezzhev, M.V. Lomonosov Moscow State Univ. (Russia)
Risto Myllyla, Univ. of Oulu (Finland)


Published in SPIE Proceedings Vol. 6627:
Optical Coherence Tomography and Coherence Techniques III
Peter E. Andersen; Zhongping Chen, Editor(s)

© SPIE. Terms of Use
Back to Top