Share Email Print
cover

Proceedings Paper

Spatially resolved in vivo measurement system for estimating the optical properties of tissue in the wavelength range 1000-1700 nm
Author(s): Pär Hjalmarsson; Suresh N. Thennadil
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For non-invasive estimation of optical properties (i.e. determination of the absorption and the reduced scattering coefficients) of turbid media such as tissue, spatially resolved diffuse reflectance spectroscopy is one of most used technique. So far this has only been done for wavelengths covered by CCD-detectors (about 350-1050nm). The NIR region beyond 1050nm i.e. the second and first overtone regions, has absorption peaks of interest e.g. for tissue the glucose peak at around 1250nm and 1600nm. Thus for non-invasive medical diagnostics applications, a spatially resolved measurement system capable of estimating optical properties in this region will be very useful. Until now optical properties of tissue in this region have only been estimated using in vitro methods e.g. using an integrating sphere set-up. In this paper we describe a spatially resolved system that will extend the region up to 1700nm by using a TE cooled 320×256 pixel InGaAS detector, a white light source and a probe that consists of 9×200micron fibres spanning 0.3 to 2.7mm from the source. Across the 320 pixels 680nm will be dispersed giving a resolution of 2.125nm/pixel and a resolving power of about 14nm. The system is validated using tissue-like phantoms. Since tissue has a high concentration of water which leads to high absorption after 950nm, the diffusion approximation cannot be used to extract the optical properties from the spatially resolved measurements. Instead, two techniques based around Monte Carlo simulations of diffuse reflectance profiles, to build a lookup table coupled with interpolation using splines or a third order polynomial, have been used to calculate the optical properties for different wavelengths. The performances of these techniques are compared. It was found that the spline fitting produced lower error for the wavelength region considered.

Paper Details

Date Published: 19 July 2007
PDF: 9 pages
Proc. SPIE 6628, Diagnostic Optical Spectroscopy in Biomedicine IV, 662805 (19 July 2007); doi: 10.1117/12.728183
Show Author Affiliations
Pär Hjalmarsson, Newcastle Univ. (United Kingdom)
Suresh N. Thennadil, Newcastle Univ. (United Kingdom)


Published in SPIE Proceedings Vol. 6628:
Diagnostic Optical Spectroscopy in Biomedicine IV
Dietrich Schweitzer; Maryann Fitzmaurice, Editor(s)

© SPIE. Terms of Use
Back to Top