Share Email Print
cover

Proceedings Paper

Influence of line edge roughness and CD uniformity on EUV scatterometry for CD characterization of EUV masks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Scatterometry, the analysis of light diffracted from a periodic structure, is a versatile metrology for characterizing periodic structures, regarding critical dimension (CD) and other profile properties. For extreme ultraviolet (EUV) masks, only EUV radiation provides direct information on the mask performance comparable to the operating regime in an EUV lithography tool. With respect to the small feature dimensions on EUV masks, the short wavelength of EUV is also advantageous since it provides more diffraction orders as compared to UV. First measurements using PTB's EUV reflectometer at the storage ring BESSY II showed that it is feasible to derive information on the line profile in periodic areas of lines and spaces by means of rigorous numerical modeling. A prototype EUV mask with a matrix of test fields each divided into subfields containing among others test fields with lines & spaces was used for the measurements. In this contribution we summarize our present results in determining line profile parameters using scatterometry and reflectometry to provide the input data for the determination of CD and side-wall geometry using rigorous calculations of EUV diffraction. Particularly, we present a first investigation on the influence of line edge roughness and CD uniformity by correlating in-plane scatterometry data for the discrete diffraction orders corresponding to the pitch of the structure to out-of-plane measurements of diffusely scattered light induced by line edge roughness and CD uniformity. We demonstrate the influence of diffuse scattering on the determination of CD and side-wall geometry using only the discrete in-plane diffraction orders. To this aim we perform finite element (FEM) simulations on 2D computational domains.

Paper Details

Date Published: 18 June 2007
PDF: 10 pages
Proc. SPIE 6617, Modeling Aspects in Optical Metrology, 66171A (18 June 2007); doi: 10.1117/12.726159
Show Author Affiliations
Frank Scholze, Physikalisch-Technische Bundesanstalt (Germany)
Christian Laubis, Physikalisch-Technische Bundesanstalt (Germany)
Uwe Dersch, Advanced Mask Technology Ctr. (Germany)
Jan Pomplun, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Sven Burger, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Frank Schmidt, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)


Published in SPIE Proceedings Vol. 6617:
Modeling Aspects in Optical Metrology
Harald Bosse; Bernd Bodermann; Richard M. Silver, Editor(s)

© SPIE. Terms of Use
Back to Top