Share Email Print
cover

Proceedings Paper

Self-sensing concrete-filled FRP tube using FBG strain sensor
Author(s): Xin Yan; Hui Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, the optic fiber Bragg grating (FBG) strain sensor was chosen as the strain measuring gauge and embedded in the inter-ply of fibers in the middle height and the hoop direction of the FRP tube. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strain of the FRP tube was recorded in real time using the embedded FBG strain sensor as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensor can faithfully record the hoop strain ofthe concrete-filled FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strain recorded can reach more than 7000με.

Paper Details

Date Published: 5 March 2007
PDF: 4 pages
Proc. SPIE 6595, Fundamental Problems of Optoelectronics and Microelectronics III, 65953I (5 March 2007); doi: 10.1117/12.725928
Show Author Affiliations
Xin Yan, Harbin Institute of Technology (China)
Hui Li, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 6595:
Fundamental Problems of Optoelectronics and Microelectronics III

© SPIE. Terms of Use
Back to Top