Share Email Print
cover

Proceedings Paper

Study on fabrication of smart FRP-OFBG composite laminates and their sensing properties
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fiber reinforced polymer (FRP) has gained much attention in civil engineering due to its high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and good fatigue resistance. Optical Fiber Bragg Grating (OFBG) is now widely accepted as smart sensor due to its advantages of electric-magnetic resistance, small size, distributed sensing, durability, and so on. Combined the FRP with OFBG, new kind of smart FRP-OFBG composite laminates was developed. Fabrication method of the smart composite laminates was introduced in this paper. The study presented the basic principle of OFBG sensors. Then the strain and temperature sensing properties of the proposed smart FRP-OFBG composite laminates were experimentally studied on material test system and under hot water, respectively. The experimental results indicate the strain sensing properties of the smart FRP-OFBG composite laminates are nearly the same as that of bare OFBG, however, the temperature sensing abilities of the smart FRP-OFBG composite laminates are improved and the sensitivity coefficient is nearly 3.2 times as much as that of bare OFBG. The strain and temperature sensing precisions of the smart FRP-OFBG composite laminates are 1 &mgr;&Vegr; and 0.03 °C, respectively. The smart FRYOFBG composite laminates are very proper for application in civil engineering.

Paper Details

Date Published: 5 March 2007
PDF: 6 pages
Proc. SPIE 6595, Fundamental Problems of Optoelectronics and Microelectronics III, 65952W (5 March 2007); doi: 10.1117/12.725913
Show Author Affiliations
Yanlei Wang, Harbin Institute of Technology (China)
Zhi Zhou, Harbin Institute of Technology (China)
Jinping Ou, Harbin Institute of Technology (China)
Dalian Univ. of Technology (China)


Published in SPIE Proceedings Vol. 6595:
Fundamental Problems of Optoelectronics and Microelectronics III

© SPIE. Terms of Use
Back to Top