Share Email Print

Proceedings Paper

Semiconductor saturable absorbers with recovery time controlled through growth conditions
Author(s): Mircea D. Guina; Pietari Tuomisto; Oleg G. Okhotnikov; Saulius Marcinkevicius; Kenichiro Mizohata; Juhani Keinonen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We discuss a new method to shape the temporal response of saturable absorption in semiconductors. In particular, we investigate the possibility to control independently the absorption recovery time of each quantum-well forming the semiconductor absorber. The recovery time is tailored by irradiation with nitrogen ions produced by an RF-plasma source. The irradiation is performed in-situ as one step of the epitaxial growth process; the quantum-wells are individually exposed to a flux of N-ions after they are grown. The amount of non-radiative recombination centers within the quantum-wells is strongly related to the time interval during which the N-ions flux is active and to the thickness of the semiconductor layer grown on top of each quantum-well before the irradiation is performed. We apply this method to fabricate fast semiconductor saturable absorbers operating in the 1-&mgr;m wavelength range. The absorption recovery time could be changed from 300 ps to 10 ps without degradation of the nonlinear optical response. The practicality of the design is finally proved by using the semiconductor saturable absorbers for mode-locking Yb-doped fiber lasers.

Paper Details

Date Published: 20 February 2007
PDF: 7 pages
Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645113 (20 February 2007); doi: 10.1117/12.725397
Show Author Affiliations
Mircea D. Guina, Tampere Univ. of Technology (Finland)
RefleKron Ltd. (Finland)
Pietari Tuomisto, Tampere Univ. of Technology (Finland)
Oleg G. Okhotnikov, Tampere Univ. of Technology (Finland)
Saulius Marcinkevicius, Royal Institute of Technology (Sweden)
Kenichiro Mizohata, Univ. of Helsinki (Finland)
Juhani Keinonen, Univ. of Helsinki (Finland)

Published in SPIE Proceedings Vol. 6451:
Solid State Lasers XVI: Technology and Devices
Hanna J. Hoffman; Ramesh K. Shori; Norman Hodgson, Editor(s)

© SPIE. Terms of Use
Back to Top