Share Email Print

Proceedings Paper

Correlation detection filter for imaging laser radar
Author(s): Jianfeng Sun; Qi Li; Wei Lu; Qi Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser radar can simultaneously produce the intensity and range images, and the space resolution is high, so the recognition performance is well, and it can choose the aim point of target. Laser radar is applied to many fields, such as guidance, navigation, and becomes the research hot point in recent years. In the vertical detection of laser radar, the algorithm is required not only solving in-plane rotation-invariant problem, also the distortion-invariant problem, and it must satisfied the real-time. Correlation algorithm is a parallel processing procedure, detecting many targets at one time, and its design can be implemented on the high speed digital signal processor. In the paper, a new filter named CHF-MACH filter is presented, which combine multiple circular harmonic expansions into one filter through MACH criteria. Because of the filter having the characters of the two filters, it can solve the problems of in-plane rotation-invariance and distortion-invariance simultaneously, and meet the real-time requirement. The simulated range image of laser radar is regarded as research target, and computing the PSR (peak to sidelobe ratio) values of correlation output of the different objects, and plotting the PSR curves of the different angles. Simulating the scene of laser radar which includes multiple objects, CHF-MACH filter performance is validated through testing with the different angles for the objects, and the non-training images can obtain the well correlation output.

Paper Details

Date Published: 11 January 2007
PDF: 6 pages
Proc. SPIE 6279, 27th International Congress on High-Speed Photography and Photonics, 62792Z (11 January 2007); doi: 10.1117/12.725269
Show Author Affiliations
Jianfeng Sun, Harbin Institute of Technology (China)
Qi Li, Harbin Institute of Technology (China)
Wei Lu, Harbin Institute of Technology (China)
Qi Wang, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 6279:
27th International Congress on High-Speed Photography and Photonics

© SPIE. Terms of Use
Back to Top